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Abstract—Property-Directed Reachability (PDR) is a scalable
method for inductively checking reachability of system models.
PDR is specialized for Boolean and integer systems, but it is cur-
rently unable to provide probability information for continuous-
time systems like Chemical Reaction Networks (CRNs). This
research advances PDR to bound variables in infinite-state CRNs
and to estimate a target state’s reachability probability.

Index Terms—Property-Directed Reachability, Chemical Reac-
tion Networks, Probabilistic Verification

I. BACKGROUND

Property-Directed Reachability (PDR), also known as IC3,
is a highly-scalable symbolic verification technique designed
for reachability analysis of Boolean systems [1], [2]. PDR has
since been expanded and revised to verify systems with quan-
tifier free formulae over bitvectors [3] and Markov decision
processes [4]. Its scalability has increased its popularity, and
efforts have recently been made to improve its efficiency and
broaden its use cases [4]-[12].

In a model with initial state I and safety property P, PDR
is highly effective at either generating a single trace from [
to a target state satisfying —P or providing an invariant as
a proof that P holds. PDR analyzes a model using relatively
inductive frames. A frame Fj, contains an overapproximation
of states reachable from I within k& steps. In other words, F}
contains reachable regions (collections of states) from Fj,_1
in one step. In traditional PDR, execution terminates when the
whole reachable state space satisfies P or when PDR cannot
exclude a target state from the reachable area. This work
leverages PDR’s ability to find traces to —P to obtain the
probability of a CRN behavior of interest.

A simple example is shown in Figure 1. Frame Fj indicates
that only I is reachable in zero steps. In Fj, unreachable
regions from Fj are blocked (shown in gray). F; proves —P
is unreachable from Fy within one step. Then frame F5 is
created, and unreachable regions from F} are blocked. After
two steps, more states are reachable, but =P is still blocked.
After creating Fj, it is impossible to block every target state.
Thus, a trace is found inductively as follows: state so in Fb
can reach —P in Fj3 in one step. State s; in F) can reach so,
and I can reach s;. Thus, the trace marked by the red dotted
arrows is a counterexample trace from I to =P and the safety
property P does not hold in this model.
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Fig. 1. Single 3-step PDR Counterexample

II. PROJECT GOALS

While single counterexample generation makes PDR a use-
ful tool for reachability analysis in a variety of systems [1], [3],
[13], PDR can be adapted and specialized to Chemical Reac-
tion Networks (CRNs) modeled as Continuous-Time Markov
Chains (CTMCs). CRNs are a formal language for modeling
chemical kinetics in synthetic biological systems. CRNs often
include rare events that challenge state-of-the-art Probabilistic
Model Checking (PMC) tools like PRISM [14], Storm [15],
and STAMINA [16]. These challenges are demonstrated in [17].
While probabilistic extensions of PDR are promising [4], [5],
these tools are designed for discrete-time Markov models.
Further, these tools verify a user-provided upper bound on the
probability of failure, requiring either advance knowledge of
the model or guess-and-check probability upper-bound calcu-
lations. These current drawbacks bar current PDR expansions
from being used in CRN evaluation. This project tackles three
main challenges for CRN analysis and verification:

1) Obtaining an accurate rare-event probability for CRNs
requires the enumeration of many traces from I to —P;

2) Finding probabilities for a CRN requires CTMC numer-
ical analysis and explicit state space construction; and

3) Bounding variables in infinite-state CRNs requires user
knowledge, so users often have to guess bounds that lead
to state explosion or remove important states.

We propose the following two solutions to these problems:

1) We present a fully-automated method to bound a state
space by gathering information from PDR frames. These
bounds can allow existing PMC tools to verify an
explicit state space that includes relevant traces; and



2) We propose an alternative to explicit state space enu-
meration: a layered expansion for PDR that symbolically
estimates the probability of reaching —P in a CRN.

III. PDR-BASED VARIABLE BOUNDING

We propose a CRN-optimized version of PDR to automat-
ically bound variables in an otherwise infinite state space.
These bounds enable efficient PMC and resolve state explo-
sion. We propose three adaptations to PDR to achieve this:

1) When blocking regions, use information from the CRN
model to suggest smart bounds for each variable. For
example, if a variable x can increase by up to two at
each step, a reasonable bound at step k is < 2k. PDR
can then create bounds for each variable in the model.

2) Once one trace from [ to =P is found in n steps, frame
F,, contains every trace of n steps. CRNs are highly
concurrent, so allowing an additional few steps can
significantly increase the probability of a CRN reaching
—P [17]. PDR can thus continue to propagate blocked
regions into k additional frames. Variable bounds are
then derived from blocked regions at frame F), ., en-
abling a PMC tool to find all traces of up to n+ k steps.

3) Bounds can be further tightened by evaluating backward
reachability. Consider the following CRN modification:

o Consider —I as the safety property
e Consider —P as the initial state formula
o Reverse all transitions

By evaluating this modified model, PDR obtains a
backward-reachable region. That is, it finds all states
that can reach a target state within n steps, regardless
of the initial state. Consider the reachable states from
standard PDR Region A and the backward-reachable
states Region B. The region A N B thus contains all
the traces that start at I and end at —P, as shown in
Figure 2. This produces a tighter bound on the state
space and can improve PMC efficiency.
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Fig. 2. Forward vs. Backward Reachability

Enumerating many traces explicitly is challenging in PDR,
but PMC tools like PRISM and Storm are efficient at finding
probabilities given a well-bounded state space. The probability
returned by PMC using these bounds is a lower bound on
the true probability because the model is only guaranteed to
include traces up to a finite number of steps. As traces accumu-
late, the sum of the probability of those traces asymptotically
approaches the true probability. Thus, in a practical case, this
method likely allows PMC to find the true probability.

IV. USING PDR TO ESTIMATE PROBABILITY

We propose a layered approach to PDR that enables incre-
mental probability estimation. This approach involves three
layers, described as follows and shown in Figure 3:
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Fig. 3. Layered PDR Example

Layer 1: Reachability. Layer 1 is described in Section III.
This layer is probability-agnostic and blocks unreachable
states in each frame. The unblocked/white area in this layer is
an overapproximation of the area reachable within % steps.

Layer 2: Time-Bounding. Layer 2 analyzes CRN time-

bounded reachability information. CRN properties are con-
strained by a time bound that can be used to decide what
regions of a state space are worth exploring. This layer groups
the reachable area of Layer 1 into regions that allow for
a calculation of bounds for each region’s mean dwell time
(i.e., the average amount of time a CRN expects to spend
in a region). Using PDR’s inductive checking, this layer
accumulates mean dwell times and blocks regions that take too
long to reach a target state. This layer blocks a larger region of
the state space than reachability analysis alone, but it causes
this method to give an estimate of the final probability, not
a guarantee. The white/unblocked region in this layer is an
overapproximation of the region that, on average, can reach a
target state within the CRN property time bound.
Layer 3: Probability-Labeled Regions This layer is the
intersection of the reachable regions at each frame in Layers
1 and 2. This layer groups states into regions of states with
similar properties and labels each region with a probability.
The probability labels in each region at each frame are the
upper and lower bounds on the probability of reaching the
region from the previous frame. The final probability upper
and lower bounds can then be computed inductively starting
at regions satisfying —P in the final frame.

V. CONCLUSION

This project aims to advance PDR for probabilistic CRN
verification. Providing explicit bounds for a CRN state space
enables more efficient verification while removing user guess-
work. When cutting-edge PMC tools cannot compute a prob-
ability, a layered expansion of PDR enables the inductive
estimation of probability bounds.
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